(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, sel, fib1, s, cons, add, fib, proper, top

They will be analysed ascendingly in the following order:
sel < active
fib1 < active
s < active
cons < active
add < active
fib < active
active < top
sel < proper
fib1 < proper
s < proper
cons < proper
add < proper
fib < proper
proper < top

(6) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
sel, active, fib1, s, cons, add, fib, proper, top

They will be analysed ascendingly in the following order:
sel < active
fib1 < active
s < active
cons < active
add < active
fib < active
active < top
sel < proper
fib1 < proper
s < proper
cons < proper
add < proper
fib < proper
proper < top

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Induction Base:
sel(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))

Induction Step:
sel(gen_0':mark:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
fib1, active, s, cons, add, fib, proper, top

They will be analysed ascendingly in the following order:
fib1 < active
s < active
cons < active
add < active
fib < active
active < top
fib1 < proper
s < proper
cons < proper
add < proper
fib < proper
proper < top

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)

Induction Base:
fib1(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))

Induction Step:
fib1(gen_0':mark:ok3_0(+(1, +(n1209_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
s, active, cons, add, fib, proper, top

They will be analysed ascendingly in the following order:
s < active
cons < active
add < active
fib < active
active < top
s < proper
cons < proper
add < proper
fib < proper
proper < top

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)

Induction Base:
s(gen_0':mark:ok3_0(+(1, 0)))

Induction Step:
s(gen_0':mark:ok3_0(+(1, +(n2717_0, 1)))) →RΩ(1)
mark(s(gen_0':mark:ok3_0(+(1, n2717_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(14) Complex Obligation (BEST)

(15) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
cons, active, add, fib, proper, top

They will be analysed ascendingly in the following order:
cons < active
add < active
fib < active
active < top
cons < proper
add < proper
fib < proper
proper < top

(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)

Induction Base:
cons(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))

Induction Step:
cons(gen_0':mark:ok3_0(+(1, +(n3401_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(17) Complex Obligation (BEST)

(18) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
add, active, fib, proper, top

They will be analysed ascendingly in the following order:
add < active
fib < active
active < top
add < proper
fib < proper
proper < top

(19) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)

Induction Base:
add(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))

Induction Step:
add(gen_0':mark:ok3_0(+(1, +(n5220_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(20) Complex Obligation (BEST)

(21) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
fib, active, proper, top

They will be analysed ascendingly in the following order:
fib < active
active < top
fib < proper
proper < top

(22) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)

Induction Base:
fib(gen_0':mark:ok3_0(+(1, 0)))

Induction Step:
fib(gen_0':mark:ok3_0(+(1, +(n7542_0, 1)))) →RΩ(1)
mark(fib(gen_0':mark:ok3_0(+(1, n7542_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(23) Complex Obligation (BEST)

(24) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(26) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(27) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(28) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

The following defined symbols remain to be analysed:
top

(29) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(30) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(31) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(32) BOUNDS(n^1, INF)

(33) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(34) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(35) BOUNDS(n^1, INF)

(36) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(37) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(38) BOUNDS(n^1, INF)

(39) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(40) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(41) BOUNDS(n^1, INF)

(42) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(43) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(44) BOUNDS(n^1, INF)

(45) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(46) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(47) BOUNDS(n^1, INF)

(48) Obligation:

TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok

Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))

No more defined symbols left to analyse.

(49) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(50) BOUNDS(n^1, INF)